Proceedings of the 17t" GAMM-Seminar Leipzig 2001, pp. 1-28

A Generic Toolbox for the Grid Craftsman

Guntram Berti
Institut fur Mathematik
BTU Cottbus, Germany

June 19, 2001

Abstract

Universally reusable tools for grid management tasks are scarce. We iden-
tify coupling of algorithms to data structures as main obstacle for reuse, and
show how to overcome the difficulties by using generic programming. After
introducing an abstract kernel of grid functionality, we present some universal
generic grid tools based on that kernel which are usable for arbitrary grid data
structures. For evaluating the approach, we describe how to leverage these
tools in order to set up a framework for hybrid grid generation. Finally, we
show how to use generic components with existing grid data structures, and
discuss the efficiency of generic grid tools, which is overall quite satisfying.

1 The Grid Craftsman’s Old Tools

Computational scientists who are in charge of constructing and processing grids for
scientific applications are in need of a vast amount of different support tools.

First spring to mind basic tasks, such as reading and writing grids from and
to files in different formats, including compressed ones, converting between various
grid representations, or calculating additional incidence information.

In the grid generation process, one often has to deal with different generation
procedures, producing grids which have to be combined afterwards. This calls for
methods to find overlapping parts of different grids, to glue grids together or to cut
parts off a grid, to efficiently locate points in grids, or to coarsen and refine a grid
according to some criterion.

Then, the validity of the resulting has to be ensured (looking for self-intersections
etc.), its quality has to be monitored and enhanced if necessary. For these tasks,
adequate visualization of critical grid parts and their quality measures can be of
great help, especially in more involved situations.

The list could obviously be continued. We did intentionally not list more
domain-specific tasks such as numerical discretizations, which merely work on grids
and not with grids, and thus do not properly fit into the toolbox we are concerned
with here. However, the approach we are going to present applies to them as well.

Given the large number of more-or-less routine tasks which need to be performed
by a grid craftsman, one might expect a well established set of standard tools to

2 2 THE GRID CRAFTSMAN’S NEW TOOLS

perform these tasks. However, the situation is different: The “standard toolbox”
is almost empty.

Why is this claim justified, and what are the reasons for this situation? It is
true, there exist a large number of tools for these tasks. But a standard tool, by
definition, has to be independent of concrete details or contexts. We can use a
standard hammer to drive a nail into the wall, regardless whether it is a copper
nail or a steel nail. In contrast, almost no existing tool for the one of the grid
tasks described before can used in such a general way: The typical tool is very
tightly coupled to the internals of a specific grid representation. It is thus buried
in a specific context; even changing the underlying grid data structure a bit often
causes major headaches, let alone the effort required to make it work with a different
representation.

Some degree of independence is achieved only by tools operating on some “stan-
dard” (or not-so-standard) file format. This approach, however, has too many
drawbacks to be considered a general solution: First, there are performance issues:
I/0 is notoriously slow, and if the task involves local operation on a small part of
the grid only, or the grid is represented implicitely (e. g. Cartesian), it is extremely
wasteful. When chaining several operations, I/O quickly becomes a bottleneck.
Also, if the grid has to be changed by the tool, the approach leads to difficulties.
And finally, there is not format which can account for all types of grids; so, the
notion of a “standard file format” itself is a chimera — think of chimera-type grids.

Closely related is the approach taken by libraries such as LAPACK [1], which
operate on a set of standard data structures. This works more or less well for do-
mains with data structures exhibiting comparatively low variability, such as dense
matrices; but already there it leads to a considerable amount of redundant func-
tionality. It does not scale to areas with highly variable representations, which is
the case for grid data structures.

In the next section, we will explore a novel technique, generic programming,
which overcomes the limitations of current approaches for designing libraries of
grid tools. In section 2.2, we present a minimal kernel of grid functionality al-
lowing to decouple algorithms from data structures. Section 3 gives a sample of
reusable generic tools. In section 4, the approach is put into practice, implement-
ing a framework for generating hybrid grids, using generic components as much
as possible. Practical issues concerning the use of generic components and their
efficiency are dealt with in section 5. Finally, we discuss the overall merits of our
approach.

2 The Grid Craftsman’s New Tools
2.1 The Problem

We have already stated that the core of the problem are the close links between
grid data structures and implementations of algorithms operating on them. To
illustrate this issue, lets look at a simple, yet instructive, example. The following
algorithm calculates and stores, the surface area (or perimeter in 2D) for each cell
in a grid G:

OUT: surface: G — R

2.1 The Problem 3

for all Cells ¢ € G4 do
surface(c) = 0
for all Facets f of C do
surface(c) += volume(f)

Here d is the dimension of G, and G% denotes the set of d-dimensional elements
of G, that is, the cells. Furthermore, a facet is an element of co-dimension 1, that
is, an edge in 2D and a face in 3D (see also section 2.2.1).

The important point here is the generality of this algorithm: It abstracts from
any representation details, and therefore works for any grid, regardless of its di-
mension, or whether it is Cartesian, simplicial or something different.

Now consider what happens if we implement this algorithm for a concrete rep-
resentation. Let us assume we have a simple data structure for a 2D triangulation
where cell-vertex incidences are stored in a plain array cells, such that cells[3*c
+v] gives the index of the vth vertex of cell c. The array geom is assumed to hold
the coordinates of vertex v:

double * surf = new doublel[nc];
for(int ¢ = 0; ¢ < nc; ++c) {
surf[c] = 0.0;
for(ve = 0; ve < 3; ++vc) {
int vel = (vc+1)%3;
double dx = (geom[2xcells[3*ctvc 1] 1 - geom[2*cells[3*c+vcl]l 1);
double dy = (geom[2*cells[3*c+vc]+1] - geom[2*cells[3*c+vcl] +1]);
surf[c] += sqrt(dx*dx+dy*dy);

This implementation loses all of the generality of the abstract algorithm, and
is therefore not usable for other types of grids. The situation is typical for current
grid tools: Specialized to one concrete grid representation, much less general than
the underlying algorithm, and therefore not reusable in different contexts, that is,
for different grid data structures. While this might not be considered a great loss
in the specific case at hand, it is clear that reuse of more complicated algorithms
across a wide variety of grid representations would greatly enhance productivity.

The problem being the close relationship between data structures and algo-
rithms implementations, the “obvious” way to go is to separate them. We must
somehow avoid the over-specification present in the implementation shown before,
and restrict ourselves to using only information intrinsic to the notion of a grid,
that is, using nothing which is related to arbitrary representation details.

A technique trying to abstract from representational issues is known as generic
programming [14] and has been popularized recently by the Standard Template
Library (STL) [10], which is now part of the C++ standard. Among the languages
used for scientific software, C+-+ now has by far the most sophisticated support
for generic programmming. It has therefore been chosen for the Grid Algorithms
Library GrAL [5], which is a freely available testbed for the ideas described in this
paper.

Now, what is the intrinsic information on grids an algorithm might use? To get
an idea, let us have a look at the needs of the surface algorithm:

1. iteration over all cells of a grid (combinatoric)

4 2 THE GRID CRAFTSMAN’S NEW TOOLS

2. iteration over all facets of a cell (combinatoric)
3. area of facets (geometric)
4. store real numbers on cells (grid function)

By analyzing different algorithms, we come to similar results [4]. The required
functionality falls into three large groups:

1. Combinatorial (mainly iteration over elements)
2. Geometric (coordinates, centers, areas, ...)
3. Grid functions (associating data to grid elements)

In the following, we will very briefly present a functional kernel for grids which
covers these three areas and has proven sufficient to support a large group of algo-
rithms, most notably non-mutating algorithms. In section 2.2.5, we introduce some
coarse-grained mutating primitives which help to implement mutating algorithms
in a generic way, too.

To give a short preview of how this looks in action, here is the generic imple-
mentation of the surface algorithm:

grid_function<Cell,double> surface(Grid);
for(CellIterator c(Grid); !c.IsDone(); ++c) {
surface[c] = 0.0;
for (FacetOnCellIterator f(c); !f.IsDone(); ++f)
surface[c] += Geometry.volume(f);

We see that this implementation is as general as the abstract algorithm. In fact,
there is a one-to-one correspondence between the generic C++4 code and the pseudo-
code. The primitives used here can be implemented for virtually any concrete grid
representation; in section 5.1 we sketch an implementation for the triangle data
structure described above.

Now that we have an idea how the generic approach works in principle, we
can list some requirements on a functional kernel we would like to meet. First,
it must capture the mathematical properties of grid reasonably well: If it does
not allow to get the information inherent in a mathematical grid underlying a
concrete representation, it is to weak. On the other hand, because it has to be
implemented for each concrete grid data structure, it should be minimal and largely
orthogonal. Hence, we must strive for a balance between completeness, minimality,
efficiency and expressivity. For example, if we know that the cells are triangles
(simplices), we can answer questions of the form “Give me the vertex opposite
to this facet”. Such queries have been omitted from the kernel for two reason:
First, they assume a special type of grid (simplicial), and second, it turns one
that information that detailed is only seldom needed (mostly by certain refinement
strategies and higher-order FEM discretizations). The required functionality should
be added in a separate layer.

An important point is that the kernel must allow for efficient implementations
— too inefficient generic algorithms will not be used and are therefore pointless.
Vice versa, a grid component will typically implement only those parts of the

2.2 A Functional Kernel for Grids 5

kernel which can meet reasonable efficiency requirements. For example, in the
triangulation example, if cells are the only data stored, we cannot efficiently
access neighbor cells, and hence will not implement the corresponding concept of
the kernel (CellOnCelllterator). If we need this information, we can either switch
to a more complete data structure, or calculate the information ad hoc, using the
generic neighbor search algorithm presented in section 3.1.

2.2 A Functional Kernel for Grids
2.2.1 What Is a Grid?

What is a grid, then? Before going into the details of developing a functional
kernel for grids, we have to be explicit about this question. In fact, there are many
definitions in use, which differ in smaller or larger details. Being independent of any
concrete grid representation, we cannot fall back to the pragmatic view that a grid
is what our data structure can represent (which, besides, is often quite different
from what one naively would expect).

It turns out that grids exhibit a rich variability with respect to their mathe-
matical structure, affecting both algorithms and data structures. See [4] for more
detailed information than we can present here. In order to come up with definitions
for these mathematical grids, we will heavily exploit the body of knowledge built
up by the field of combinatorial topology. The central notion is that of an abstract
complex:!

Definition 1 (Abstract complex) An abstract finite complex C is a set of el-
ements e, together with a mapping dim : C — {0,...,d} C N, (dim(e) is called
the dimension of e), and a partial order < (side-of relation) with e; < es =
dim(ey) < dim(eg). The dimension of C is the mazimal dimension of an element,
d. By C* we denote the set of k-dimensional elements of C. Elements with di-
mension 0 are called vertices, elements with dimension d are called cells (cf. table
1). A morphism between abstract complexes C1,Co is a mapping @ : C; — Co with
e< f=®(e) <(f).

An abstract complex is a purely combinatorial entity, also known as poset. We
need the notion of a geometric complex, too:

Definition 2 (Geometric realization of an abstract complex) A geometric
realization T' of an abstract complex C is a Hausdorff space ||C|| and a mapping

r:C—T(C) =|c|=[JT()
ecC

with

e1 <ey = T(ep) CIl(ex) and OT(eg) = U L(e;) Vei,ex €C

e;1<e2

INote that this definition is more general than the one given in [4]

6 2 THE GRID CRAFTSMAN’S NEW TOOLS

Element dim codim Sequence Iterator

Vertex 0 d Vertexlterator
Edge 1 d-1 Edgelterator
Facet d-1 1 Facetlterator
Cell d 0 Celllterator

Table 1: Combinatorial grid entities

Note that this very general definition allows for cells with holes and several
components. This might seem much too general; however, if we think of quotient
grids induced by a partitioning, it makes perfect sense.

In the special case that every element I'(e) of a geometric complex is homeomor-
phic to the open unit ball of dimension dim(e), we obtain the notion of a (finite)
CW-complex of algebraic topology. While this definition applies to a geometric
complex, the condition of having a geometric realization which is a CW-complex
obviously constrains the combinatorial structure of an abstract complex.

In the following, if speaking of a grid, we will only assume the general definition
of a complex, indicating restrictions where necessary. Important special cases occur
for example when the relation < induces a lattice structure (see [4]) on the elements,
implying unique vertex sets, or when the geometric complex is a manifold (with or
without boundary).

The following presentation will be terse, a detailed description of the kernel
syntax can be found in [4, Appendix A].

2.2.2 Combinatorial primitives

The combinatorial layer views a grid as a purely combinatorial entity, that is, it is
concerned only with abstract complexes. The elements of the grid are its “atoms”
and named according to their dimension or codimension, see table 1. A minimal
representation of an element of a fixed grid is called element handle, which may be
simply an integer. Handles are useful e. g. for subranges (see 3.3).

At a very basic level, a grid is a set of sequences: A sequence of its vertices,
of its edges, and so on. We can model this property by introducing grid sequence
iterators, see table 1.

In order to access the incidence relationship, we need incidence iterators (ta-
ble 2). These allow for example to access the sequence of all vertices of a cell
(VertexOnCelllterator), see fig. 1. The number of different incidence iterators is
d(d — 1), where d is the grid dimension.

A similar concept are adjacency iterators, which relate elements of the same
dimension. We define them only for vertices and cells, because there is no “natural”
definition for the intermediate dimensions, and they seem to be hardly used.

As already mentioned, it is not required to implement all types of elements or
iterators. Also, even if the kernel interface for an element type is supported, it does
not need to be stored explicitly. The best example here is a Cartesian grid, where
everything is given implicitly. But also unstructured grids do not have to store all

2.2 A Functional Kernel for Grids 7

VertexOnVertexlt (A) VertexOnEdgelt VertexOnFacetlt VertexOnCelllt

EdgeOnVertexIt EdgeOnFacetlt EdgeOnCelllt
FacetOnVertexlt FacetOnEdgelt FacetOnCelllt
CellOnVertexlt CellOnEdgelt CellOnFacetlt CellOnCelllt (A)

Table 2: The full set of incidence and adjacency (A) iterators in 3D

2

Figure 1: Action of a VertexOnCelllt- Figure 2: Action of a CellOnCellltera-
erator (Incidence iterator) tor (Adjacency iterator)

their elements: In the triangulation example, there is only storage for cells (the
cells array), but it is nevertheless possible to define types Vertex and Edge with
corresponding sequence iterators, see section 5.

2.2.3 Grid functions

Mathematically, grid functions are simply mappings from grid elements to objects
of some type T. Behind this simple concept, there are a multitude of different
options, which we cannot discuss here in detail, see [3] for more on this topic. The
most important distinction is whether grid functions have to allocate storage for
each element (total grid function), or only for some, assigning a default value to
the rest (partial grid function). For instance, the grid function used in the generic
code snippet on page 4 is a total grid function. Partial grid functions are handy if
one has locally operating algorithms which put marks on only a few elements, for
example on the boundary.

Total grid functions can be implemented conveniently using arrays, if elements
are consecutively numbered; otherwise, and for partial grid functions, hash tables
can be used.

Often, one finds grid functions merged into the representation of grid elements,
e. g. cells having additional data elements. This approach has the severe drawback
of coupling data structures to the algorithms using them, which is even worse than
the inverse coupling we want to eliminate. In the generic framework, such imple-
mentations are difficult to use, if temporary grid functions are needed. However,
adapters can be used to make the in-element data accessible to generic algorithms.

8 2 THE GRID CRAFTSMAN’S NEW TOOLS

2.2.4 Grid Geometries

Grid geometries correspond to geometric realizations of abstract complexes. They
may be simply flat (or straight-line) embeddings into R?, where each element is
mapped into an affine subspace of the element’s dimension. But we can also think
of curved embeddings or more complicated spaces, such as manifolds.

From a functional point of view, a geometry provides mappings from combina-
torial entities to geometric entities, most notably vertices to points (coordinates).
In addition, a geometry may provide measures such as volumes for each dimension,
centers, and so on. We did not limit the possible functionality of a grid geometry
to a predefined set of primitives, because different algorithms use quite diverging
geometric information. On the other hand, not all geometric queries are meaningful
for all geometric embeddings: What is the center of a curved segment? What is
the normal of a facet, when the grid is embedded in a higher-dimensional space?

An important aspect of grid geometries is the encapsulation of geometric de-
cisions. If, for example, we look at the generic implementation of the surface
algorithm on page 4, we do not need to change anything when we switch from a
flat embedding to an embedding into the surface of a sphere, an option useful for
instance in a geographic information system. We can also define several geometries
for the same (combinatorial) grid, using the “exact” curved geometry only when it
is needed (say, for grid refinement), employing the “cheap” flat straight-line geom-
etry otherwise.

Also, we can hide computational aspects, like whether to store or to compute a
value. So, even if some geometric questions can be answered by combining lower-
level primitives (such as vertex coordinates), it may be wise to leave it to the
geometry.

2.2.5 Mutating Primitives

Operations that change data structures are in general more complicated than op-
erations that merely read them. Grids are no exception to this rule.

Speaking of mutating grid operations, Euler operators [12] which delete or add
one (or a few) elements at a time immediately spring to mind. These atomic op-
erations are difficult to implement efficiently for some data structures, for instance
the array-based triangulation discussed before. Therefore, we introduced coarse-
grained primitives which do a better job hiding performance trade-offs, yet are
sufficient for large part of mutating algorithms. For a discussion of Euler operators
in a generic programming context, see [9].

The number of mutating primitives needed in practice is surprisingly small:

e Copy: Copy one grid into another
e Enlarge: Glue two grids together (by copying one part)
e Cut: Cut off part of a grid

As is shown below, Copy could even be considered a special case of Enlarge. We
will not treat Cut here, see section 3.5 for a possible alternative.

Now, we often have data associated to grid, for example in grid functions, which
have to be transferred from the source grid to the copy. Therefore, the primitives

must support associative copies, that is, they return a mapping M (grid morphism)
between source Gsrc and copy G egt -
Thus, the copy primitive has the following interface:

CopyGrid (G jegt Gsre, Mgre, dest)

CopyGrid() is a semi-generic primitive: In general, it will be specialized for the
type of Gjagt, Whereas the type of Ggre remains fully generic. For convenience,
there are extended versions which copy also grid geometries, although they are
redundant, due to the associative copy feature.

The Enlarge primitive needs as additional parameter an identification relation
I between source and destination vertices, where I(v) = w means that w is going to
be identified with v. Similar to CopyGrid(), EnlargeGrid() produces a mapping
M between the source grid and the copied part of the destination grid G jqg¢:

EnlargeGrid(G jegt:Gsre, I Moy, dest)

In the special case that G juet is initially empty (and consequently, so is I), we
obtain the Copy primitive. The latter is provided as a separate primitive, because
it is a basic operation and might be implemented more efficiently in some cases.
Vice versa, we could use Copy and a fused grid view (see 3.5) to emulate Enlarge.
However, we must then take special care not to destroy prematurely the contents
of G qest (Which is referenced by Gsrc).

The Copy operation can be used to achieve transparent I/O to different grid
formats: For each format, there is one input and one output adapter. We use
CopyGrid specialized for a given grid type with the input adapter as generic Ggsre
parameter for reading a grid, and CopyGrid specialized for the output adapter with
the given grid as Ggrec parameter for writing a grid. Thus, the entire knowledge on
the specific format is encapsulated in the input and output adapters.

3 The Generic Toolsmith

The potential for generic grid tools is huge, ranging from very basic and general
purpose (even parts of the kernel can be implemented generically) to very domain-
specific, e. g. FEM discretizations. Having the general ‘toolbox’ in mind, we will
concentrate on general purpose tools, forming a generic “swiss’ army knife” for grid
processing. For a discussion of components more specific to numerical solution of
PDEs see [4].

Due to their genericity, the tools we are going to present are indeed usable
with any grid representation, after an adaptation to the kernel interface introduced
before (see section 5.1 for an example of how to adapt a given grid data structure).
Instead of trying to give an exhaustive overview of all existing generic components,
we pick some illustrative examples, discussing some in more depth, while only
passing superficially on others. To wit, we treat incidence calculations (section
3.1), grid functions and morphisms (3.2), subranges of grids (3.3), grid boundary
(3.4), grid views, which allow to operate on a grid with modified structure without
actually changing it (3.5), and a geometric component for matching grids with
touching boundaries (3.6).

10 3 THE GENERIC TOOLSMITH

3.1 Cell Neighbor Search

Two cells are neighbors if they share a common facet. Accessing cell neighbors is
crucial to many algorithms, for example finite volume discretizations. On the other
hand, this information is not readily available in the output of most grid generators,
nor is it contained in typical file representations. If the grid is such that elements
have unique vertex set, cell neighbor information can be deduced from the cell-
vertex incidence relation (more precisely, from cell-facet and facet-vertex incidence
relations).

Algorithm 1 CELL NEIGHBOR SEARCH: Find cell neighbors from facet vertex sets
IN: AgridG
OUT: A mapping Z : G% x N+ G? U {co} which maps each cell to its sequence of
neighbors, such that the nth facet of a cell ¢ is incident to the neighbor in Z(c,n).
The value ¢, indicates a boundary facet.
OUT: NV : PG° — G? x N is a mapping from vertex sets to (c,n) = (cell,local side)
pairs.
1: for all cells C € G do
for all facets F' < C' do
fc < local number of F'in C
if FO ¢ dom A then
N(F®) « (C, fc) (Store C and local facet no. at key F° (vertex set))
else (facet already found from the other neighbor D.)
(D, fp) — N(F°)
N(F?) 0
I(C, fo) — D
I(D,fp)«C
11: end if
12: Set Z(C, f) = coo V(C,f) € N (Facets still in N are boundary facets.)

© o NSO R WD

—
=4

CELL NEIGHBOR SEARCH calculates cell-cell adjacencies. It returns a mapping
Z:G%x N~ G? where Z(e1, f) = ¢o means that ¢; and ¢y share facet no. f of ¢;.
If a cell ¢ has a boundary facet f, Z(c1, f) = ¢, and (c, f) is reported in N.

The algorithm will work correctly only if the grid is (part of) a manifold-with-
boundary grid, which is satisfied by all grids commonly used for finite element
modelling. In this case, each facet has at most two incident cells.

The algorithm requires only modest grid functionality: The grid type has to pro-
vide implementations for Celllterator, FacetOnCelllterator, and VertexOnFacetltera-
tor. CELL NEIGHBOR SEARCH can be used incrementally, visiting only a subset of
cells in a grid. Incremental usage typically occurs in EnlargeGrid implementations
for grids that store cell-cell-adjacencies. Then A initially contains all identification
facets, and C is the set of new cells of the grid.

The result map 7 is a (writable) mapping from FacetOnCelllterators to cells. If
the grid has an internal data structure for storing cell neighbors, we can define
the type corresponding to Z such that this information is written directly into the
grid’s internal data structures, thus avoiding any copying overhead.

For ease-of-use, the interface has been layered, from the most general to the

3.2 Grid Functions & Grid Morphisms 11

simplest. In the latter, all possible defaults are substituted for the most common
case of calculating cell neighbors for an entire grid. A generic implementation can
be found in GrAL [5].

3.2 Grid Functions & Grid Morphisms

Both total and partial grid functions can be implemented generically. GrAL offers
an array-based total grid function and a hash-table based (partial or total) grid
function, which are suitable in the majority of cases — only rarely a special grid
function needs to be tailored for a concrete grid representation. For more details,
see [3]. The use of the generic versions for a given grid type, say MyGrid, can be
triggered by a partial specialization of the general grid function templates to the
grid’s element types:

class MyGrid { ... };

template<class T>
grid_function<MyGrid: :Vertex,T>

: public grid_function_vector<MyVertex,T>
{ /* repeat constructors */ };

template<class T>
partial_grid_function<MyGrid::Vertex,T>

: public partial_grid_function_hash<MyEdge,T>
{ /* repeat constructors */ };

Grid morphisms can be based conveniently on top of grid functions. We just

use a total grid function for each element type:
// map G1 to G2
template<class G1, class G2>
class grid_morphism {

// typedefs omitted

grid_function<Vertexl,Vertex2> vertex_map;

grid_function<Edgel, Edge2> edge_map;

Vertex2 operator() (Vertexl v) const { return vertex_map(v);}

In a practical implementation, we would store only vertex handles instead of
vertices.

3.3 Subranges & Closure Iterators

Grid subranges R C G* are ubiquitous. Often, we need the topological closure
R C G, especially if R C G% is a cell set.

Implementing the sequence iterators for the elements of R not in R can be
achieved through closure iterators. These iterators use incidence iterators and a
marking strategy to visit each element of a given type in a subrange. For instance, a
vertex closure iterator uses the Celllterator of the subrange, the VertexOnCelllterator
of the underlying grid, and a partial grid function Vertex — {0, 1} to mark already
visited vertices. Hence, closure iterators are an example where partial grid functions
are crucial for achieving optimal run time complexity — expected O(|ﬁ0|) in this
case.

12 3 THE GENERIC TOOLSMITH

3.4 Boundary Iterators

The boundary of a (manifold-with-boundary) grid has a purely combinatorial def-
inition: A facet is on the boundary iff it is incident to exactly one cell (cf. also
section 3.1 on cell-cell adjacencies). All elements of co-dimension higher than 1
contained in the closure of all boundary facets are also on the boundary.

The central algorithmic question is now how to iterate efficiently over the bound-
ary elements. A brute force approach to boundary iteration consists in scanning
all facets and to look whether they are on the boundary, and to mark incident
elements of lower dimension accordingly. This leads to (preprocessing) time O(|G|)
and storage O(]0G]). A disadvantage is that it does not allow us to handle boundary
components: Neither can we tell how many there are, nor can we iterate separately
over them.

A more sophisticated approach taking boundary components into account is the
following:

1. Find a starting flag (i. e. a tuple of incident vertex, edge, and cell in 2D, see
fig. 3) for each boundary component (a germ of the component)

2. A component can be iterated over by proceeding from one boundary facet to
the next (sharing an element of co-dimension d — 2), by using local incidence
information, to wit, the switch operator together with the NEXT-BOUNDARY-
FLAG2D algorithm (see [4] and figure 3).

Ve——— oW
e

w=-switch(v,e)

€
\Y; f

=)
e =swtch(ve,f)

f1
e -
fa

fo=switch(e f1)

(a) finding the next boundary (b) The switch operation in 2D
ﬂag:(v, €, C) = (vlv 6/7 cl)

Figure 3: How to traverse a boundary component of a 2D grid

In general, the preprocessing step 1 also takes time linear in the size of the grid,
and (at least temporary) storage of the size of the boundary. Its output, however,

3.4 Boundary Iterators 13

uses only storage of one flag (germ) per boundary component, which is typically
much smaller. In two dimensions, no additional storage is needed when traversing
the boundary (see figure 3). Because of the circular order in boundary components,
we just need to check if we are back at the start. In 3D, we need to perform a
breadth-first traversal of the boundary, using a partial grid function to mark visited
elements.

Using the switch operator requires more grid functionality than the first ap-
proach. Internally, switch uses cell-cell adjacencies which can be calculated by
CELL-NEIGHBOR-SEARCH of section 3.1. As we will make heavy use of boundary
components in section 4, we describe this approach in some more detail.

The building block is a BoundaryComponent, which in turn offers a Bound-
aryFlaglterator. BoundaryComponent defines also iterators for all element types
(except cells), which are simple wrappers around BoundaryFlaglterator. A Bound-
aryComponent is initialized with a boundary flag. A BoundaryFlaglterator uses the
approach in step 2 for its increment operation.

template<class G>
class BoundaryComponent {
flag germ;

class FlagIterator {
flag current;

Flaglterator & operator++() { /* use next-boundary-flag2d */}
Vertex current_vertex();
Edge current_edge ();
/7 ...
};

class VertexIterator {
Flaglterator it;

/] ...

Vertex operator*() const { return it.current_vertex();}
};
class Edgelterator { /* ... */ };

};

It is the job of a BoundaryRange to provide access to the whole boundary. It
manages a set of germ flags (one for each component), and provides the possibility to
iterate both over components (BoundaryComponentlterator) or elements (by nesting
a BoundaryComponentlterator with the element iterators of the latter).

template<class G>
class BoundaryRange {
grid_type *g;
list<flag> germs;

BoundaryRange (G const& g_) : g(&g_) {
// eager version
find_boundary_component_germs(g_) ;

}

BoundaryComponentIterator FirstComponent() const

14 3 THE GENERIC TOOLSMITH

{ return BoundaryComponentIterator(germs.front()); }

};

In the above implementation, we initially perform a global loop over all facets in
order to find a germ for each component, using find boundary_component_germs ().
If a boundary facet is found which has not yet been visited, the algorithm uses
BoundaryComponent<G> to loop over the corresponding component, and marks all
facets of that component.

A possible optimization would be to use a ‘lazy’ version which could be benefi-
cial if only few boundary components are eventually visited. This, however, is more
involved, especially if the user controls iteration by using e. g. ComponentIterator
and ComponentIterator::VertexIterator, because now BoundaryRange must
know whether a component has been traversed completely or not.

3.5 Grid Views

Grid views are among the most powerful components of a generic grid library. They
allow to hide disparate grid operations under the common grid kernel interface;
therefore, no new syntax has to be learned in order to use them.

In the sequel we will briefly present three examples of grid views which are used
in the hybrid grid generation case study (section 4): A disjoint union grid view, a
fused grid view, and a cell difference grid view.

Common to all these views is that they hold a reference to their base grid(s)
(the viewee), which they never modify; thus, no copying is involved. Also, views
can be nested — a view can be defined on top of another view, see section 4 for
examples.

In principle, views should try to preserve as much properties of the underlying
grid as possible. For example, if the viewee has a CellOnCellIterator, the view
should also provide one, at least if possible without effort. This, however, requires
some introspection mechanism for detecting the actual extent to with the kernel is
supported by the viewee, and is not yet fully developed.

Grid views can be accompanied by corresponding geometry and grid function
views, thus completing the support of the grid kernel, and making them for most
practical purposes indistinguishable from “real” grids.

Disjoint union grid view Perhaps the conceptually simplest operation on grids
is their formal or combinatorial union, that is, all grids are considered disjoint.
They can be “glued together” by using fused_grid_view later.

Such a disjoint union grid view just holds a container of references to grids. The
sequence iterators can be implemented by nesting iteration over the grids and than
over the corresponding elements; incidence iterators can be simply adopted from
the underlying base grids.

Fused Grid View The next slightly more complicated case occurs if some of the
vertices of a grid need to be identified, for example to glue two grids together (seen
as a single grid by virtue of disjoint union grid view). Here we need, in addition to
a grid, an equivalence relation I on its vertices, similar to Enlarge (section 2.2.5).
The equivalence classes of I are the vertices of the view. Also, other elements have

3.6 Matching vertices 15

to be fused if necessary; we assume that cells are never fused (“identification occurs
on the boundary only”).

Besides a reference to the viewed grid, a partial mapping from vertices to their
representants will be stored, which needs storage proportional to the number of
identified vertices. As mentioned above, a fused grid view on top of a disjoint union
grid view can be used to create a geometric union of grids, that is, elements which
match geometrically are identified (see also section 3.6 for finding those elements).

Cell Difference Grid View Often, we need to perform operations on a grid
minus a few cells. Instead of physically removing those cells, we can use a cell dif-
ference grid view. When implementing such a view, we must take care to “remove”
also all elements of lower dimension incident only to removed cells. An implemen-
tation typically contains a partial grid function for each element type, marking
removed elements.

In principle, the same effect could be achieved with grid subranges. Cell differ-
ence grid views are more efficient when only few cells are to be removed. If, however,
there are no cell-cell adjacencies, the preprocessing time is O(|G|), regardless of the
number of removed cells.

3.6 Matching vertices

For performing the geometric union of grids mentioned before, we need to find the
sets of vertices to be identified. If no additional information is available, we have
to match vertices geometrically, that is, have to look which (boundary) vertices are
“at the same location”: Given two grids G; and Gy with geometries I'y and I's, find
the pairs of vertices v1 € Gy, vy € Go with I'1 (v1) = I'a(v2).

What should the exact meaning of = be? Direct comparison of vertex co-
ordinates for equality is only appropriate in certain circumstances: Either exact
representation and arithmetic is used, or we must ensure identical representations
of coordinates in the I';, with coordinates of matching vertices being copies of each
other. Else, representations of the “same” coordinates will differ, possibly even if
they are “just” copied, but converted into different intermediate representations
(double to float or back).

So, in the general case, we must test whether dist(vy,vs) < &, with a suitable ¢.
On the one hand, € must be small enough to exclude false matching, on the other
hand, it should be large enough to allow for the losses of e. g. double to float
conversions. As there is no way of finding an optimal ¢ in all situations, the user
should be able to provide e. However, a good default is to set € to a small fraction
of the minimum boundary edge length of any of the grids, which is hopefully the
minimum distance of boundary vertices.

Now, the simplest (brute-force) approach to finding matching vertices is to
simply nest two loops over the boundary vertices of the two grids, checking for
every vertex in 0G; if there is a matching vertex in dG,. This has complexity
0(]0G1]|0G2]). If we assume both boundaries of the same size and the grids “well-
shaped”, then |0G;| = O(|G|*~1/?), that is, the algorithm has complexity O(|G|)
in 2D and O(\g1|4/3) in 3D.

16 4 USING THE TOOLBOX FOR HYBRID GRID GENERATION

To achieve better performance, we could use a search structure to speed up
finding matching vertices to O(|0G:|log |0G2|), at the cost of some preprocessing.
Also, we could use bounding boxes of boundary components to filter vertices —
vertices in two components of two grids can match only if they are contained in
the intersection of both bounding boxes. This is of no help if the whole boundary
component matches. We may therefore complement the bounding boxes approach
by first searching for matching vertices locally in a neighborhood of an already
found pair of vertices.

Again, no single strategy will be optimal for each situation, so the final decision
has to be left to the user. Currently, GrAL only implements the simplest strategy.

4 Using the Toolbox for Hybrid Grid Generation

In order to benchmark the ideas presented so far for a realistic task, let us now
look at an example involving hybrid grid generation. Our aim is to accomplish as
many tasks as possible with standard tools — i. e. tools not designed specifically
for hybrid grid generation. The ability to use general tools for specialized tasks will
clearly demonstrate the usefulness and feasibility of the generic toolbox approach,
but we will also encounter some typical trade-offs.

What is hybrid grid generation, and what is it good for? The key problem is
that the decision of what constitutes a good grid can vary considerably depending
on the physical phenomena to be approximated. For example, for viscous flows
the fluid behaves very differently near the solid wall boundary. In the so-called
boundary layer, velocity increases from zero at the wall very rapidly in direction
normal to the wall to the free-stream velocity in the interior of the domain. In
order to numerically approximate boundary layers, cells must be made very thin in
direction normal to the boundary, yet should be of regular size in other directions.
This requires a special grid generation process which is aware on the directional
dependencies, leading to body-fitted grids, see [21]. The rest of the domain can be
filled with an unstructured grid, which is better suited for complicated geometries.

4.1 The Basic Task of Hybrid Grid Generation

We begin with the simplest incarnation of the hybrid grid generation problem:
Given an inner boundary By of circular topology (in 2D), and an arbitrary outer
boundary Bo, we seek to generate a body-fitted grid G; around the inner boundary,
and to fill the rest with an unstructured grid Go, finally yielding a single hybrid
grid Gy = Gy U Gp, see figure 4. After being able to handle this situation, we will
gradually extend the task to several inner boundaries, finally allowing the generated
body-fitted grids to overlap, a situation which has to be detected and corrected by
our framework.

Our description is targeted towards two dimensions; we will indicate where dif-
ferences and commonalities with respect to the 3D case occur. The implementation
does not yet provide us with an industrial strength hybrid grid generator, but it
clearly indicates the feasibility of such a task with generic tools.

4.1 The Basic Task of Hybrid Grid Generation 17

Ni¥%

Do e Bo A

(a) Schematic configuration with (b) The hybrid grid Gg is the
inner domain Dj,outer domain union of the two partial grids Gy
Do and D = Dy U Do and Go

Figure 4: The basic task of hybrid grid generation in 2D

For solving the basic task with only one inner boundary, we will roughly proceed
as follows (cf. figure 4):

1. Generate a structured grid A; = Gy with annular topology around the inner
boundary (an O-grid), covering the domain D; (its outer boundary Bj; gets
defined by the process)

2. extract the outer boundary By of G, and create a suitable input (geometric
representation of Do) for an unstructured grid generator

3. generate the unstructured grid Go in the annular domain Dg.
4. Glue both grids together to get a hybrid grid Gy = Go UGy

5. Control the quality of Gy, especially at the junction (jumps in cell sizes, edge
lengths, directions etc.). We will not discuss this issue further in this paper.

Using standard tools for these tasks means in particular, that the components
for generation of the structured and the unstructured part should not know about
each other. In fact, we would like to create a framework in which we can plug any
grid generator able to produce the desired type of grid.

For the first task, a generator for circular structured grids is needed. Here we
assume that a routine written in a more “classic” style is available, which takes
as input a one-dimensional field B_I containing the boundary (plus some optional
grid spacing parameters spacing) and has as output a two-dimensional field of grid
points in RGeom, which are assumed to have identical values at both ends in one
coordinate direction. For the examples, we used the orthogonal grid generation
procedure described in [8].

18 4 USING THE TOOLBOX FOR HYBRID GRID GENERATION

reg_grid_t R;
reg_geom_t RGeom(R); // grid geometry for reg_grid_t
generate_orthogonal_0_grid(B_I, R, RGeom, spacing);

As a standard type for Cartesian grids, reg_grid_t does not provide an annular
topology. Instead of creating a specialized Cartesian view with one pair of sides
identified, we can reuse a more general component, to wit, fused grid view of
3.5, which allows to identify arbitrary subsets of vertices. Thus, we loose some
information on the Cartesian structure of the underlying grid R, but the loss does
not hurt here. The technique also extends more smoothly to other configurations
like so-called C-grids, where only parts of a block side are identified. We can find
the identification vertices either by index calculations on the original grid R, or, as
shown below, by some geometric methods discussed in section 3.6:
typedef partial_vertex_morphism<reg_grid_t> mapping_t;

mapping_t R2R;
match_boundary_vertices(R,RGeom, R, RGeom, R2R);

typedef fused_grid<reg_grid_t, mapping_t> annular_grid_t;
typedef fused_geom<annular_grid, reg_geom_t> annular_geom_t;
annular_grid_t G_I (R,R2R);

annular_geom_t Geom_I(G_I,RGeom) ;

Next, we need to extract the outer boundary Bj; of the inner grid G;. Here, too,
we could exploit the Cartesian structure, but we adopt a more general approach
which covers also the case of an unstructured G;. For instance, in 3D hybrid
grid generation, one often starts with an unstructured triangulation of the inner
boundary Bj, which is then extruded using prisms, leading to a sort of ’semi-
structured’ grid Gy, see [21].

We copy the inner grid G to the resulting hybrid grid Gy, using the semi-generic
copy operation for the type hybrid_grid_t of Gy (see section 2.2.5):
hybrid_grid_t G_H;

hybrid_geom_t Geom_H(G_H);
CopyGrid(G_H, Geom_H, G_I, Geom_I);

In order to find the outer boundary components B_M of G_H = G_I, we use generic
tools for extracting connected components of the boundary, described in section 3.4.
Here, we just need to select the outer component, which can be done for instance
by checking if some inner grid point is contained in the polygon (polytope in 3D)
defined by the component.

BoundaryComponent<hybrid_grid_t> B_M = get_outer_bd_component (G_H, Geom_H);

The extracted boundary component B_M represents the inner boundary of the
outer annulus Dp. Using a representation for domains with one (or several) holes,
we can create appropriate input data for a given unstructured grid generator. In
the practical implementation, we used the TRIANGLE generator [16], to produce
the unstructured grid G_0 covering Dg:

annular_domain_t D_0(B_M, B_0);

us_grid_t G_0O;
us_geom_t Geom_0;
generate_us_grid(D_0, G_0, Geom_0);

4.2 Broadening the Task — Several Holes 19

Then, we need to enlarge G_H by G_0. In order to do so, we must detect which
vertices of both grids will have to be identified. There are several possibilities to de-
termine these vertices. First, we could maintain a relationship (grid morphism) of
the vertices in the outer boundary B_M of G_H (which is equal to G_I at this stage) to
the corresponding vertices of G_0. This is certainly the cleanest solution; however,
not every grid generator does support such a tracking. Second, we may take the
vertices in the outer boundary of G_I and find geometrically matching counterparts
in G_0. And finally, we can forget everything we know about G_I and G_0, and iden-
tify the vertices entirely by geometric means, using match_boundary_vertices(),
as before.

Whatever the procedure for finding the identification vertices, given them, we
use the semi-generic EnlargeGrid operation (see section 2.2.5) on Gy to produce
the final grid:

partial_vertex_morphism<us_grid_t, hybrid_grid_t> Id;
/* ... calculate Id by some means ... */
EnlargeGrid(G_H, Geom_H, G_0, Geom_0, Id);

4.2 Broadening the Task — Several Holes

If there are several holes, the inner grid G; will be the union of grids G;, which in
the simplest case are just regular annular grids A;, created just as before:

// create Cartesian grids

vector<reg_grid_t> R (nholes);

vector<reg_geom_t> RGeom(nholes) ;

for(unsigned i = 0; i < R.size(); ++i)
generate_orthogonal_0_grid(B_I[i]l, R[i], RGeom[i], spacing);

// create annular views

vector<annular_grid_t> A_I(nholes);

for(unsigned i = 0; i < nholes; ++i) {
mapping_t R2R;
match_boundary_vertices(R[i], RGeom[i], R[i], RGeom[il, R2R);
A_I[i] = annular_grid_t(R[i], R2R);

}

It is algorithmically easier to extract outer boundary components of the single
annular grids before performing their union. This is feasible if annular_grid view
supports boundary iteration (cf. section 3.4). If it does not — that is, the imple-
mentation suffers from the problem mentioned at the beginning of section 3.5 — we
have to calculate outer boundary components in the single grid G;. (This part is
not shown.)

At any rate, we have to form the union of the annular grids A;:

// create union grid
typedef disjoint_union_grid<annular_grid_t> inner_grid_t;
inner_grid_t G_I(A_I.begin(), A_I.end());

We can now proceed as before, using the extracted outer boundary grids (as
well as the outer domain boundary Bp) as input for a domain representation which
allows for multiple holes (not shown).

20

4 USING THE TOOLBOX FOR HYBRID GRID GENERATION

Now, for a robust implementation, we need to check for the possibility that the
inner grids might overlap, or even extend into the outside of the domain. A first step
is to determine which cells actually do overlap. This problem is a very general one,
occurring also in the context of overset grids, see [21]. The most primitive strategy
for finding overlapping cells is to simply check each cell of an annular grid A; for
inclusion in each other annulus Aj,j # ¢. Possible optimizations are bounding
boxes to exclude non-overlapping pairs of grids a priori, and search structures to
speed up point location, such as provided by the generic library CGAL [15].

N
AN

5
.

R v V%
TSSO
eSS
A
H=H H
SIS TS
OSSR
R S
N

‘%"""’..H-
D

Figure 5: Hybrid grid with 3 holes

Different strategies can be used to decide which cells to remove:

Establish a minimum distance between clipped grids

Remove all cells which overlap (could “eat up” all cells of a small inner hole
contained in another grid)

Remove the least possible amount of cells (beware of small distances!)

remove “rings” of cells until no overlap occurs, thus keeping the Cartesian
structure intact

keep those cells that are nearer to their inner boundary than their conflicting
counterparts

Unfortunately, the decision will usually interfere with an optimal implementation
of the cell overlap query, because often not all cells have to be tested. What we try
to explain here is how to arrive at a quick, but not necessarily optimal solution;

21

it should be clear that this first shot can be improved without compromising the
generic paradigm. Regardless of the strategy chosen, we arrive at a set C; of cells
to be removed from the annular grids A;.

In the present example, we simply collected all overlapping cells in c1ip_cells,
that is,

C;=A; N L_J“Aj
J#i
The clipped grids G; = A; \ C; are readily represented by a cell difference view:
vector<annular_grid_t> A_I(nholes);

/* ... create annular views as before ... */

// determine cells to be cut away
vector<cell_range<annular_grid_t> > C_I(nholes);
clip_cells(A_I.begin(), A_I.end(),

C_I.begin());

// create difference views
typedef cell_difference_grid<annular_grid_t> clipped_grid_t;
vector<clipped_grid_t> D_I(nholes);
for(unsigned i = 0; i < nholes; ++i)
D_I[i] = clipped_grid_t(A_I[i], C_I[il);

typedef disjoint_union_grid<clipped_grid_t> inner_grid_t;
inner_grid_t G_I(D_I.begin(), D_I.end());

Now we can proceed as above by determining outer boundary components. As
before, we first copy the union G_I of the clipped view to the hybrid grid G_H,
in order to exploit its better support for incidence iterators, necessary to handle
boundary components (cf. also the discussion on view and capabilities of underlying
grids in page 14).

Of course, there is a lot of room left for improvements. For instance, we could
use more sophisticated strategies inside clip_cells(). Also, the whole aspect of
grid quality has not been covered at all, and is clearly beyond the scope of this
section. However, the author hopes that the example given is a convincing point
of departure for applying the generic principle further to this class of problems.

5 Nuts & Bolts

Now that we have seen how powerful the generic approach is, two questions might
arise: First, how can we use it with existing grid data structures (which we do not
intend to throw away)? And second, can generic programming keep its promise
of efficiency in the context of grids? We will see that both questions have quite
favorable answers in general; however, there are some caveats we will discuss.

5.1 Adapting a Given Grid Data Structure

Say we have a lot of code centered around the simple triangulation data struc-
ture mentioned before — an array cells with cell-vertex incidences, and an array

22 5 NUTS & BOLTS

coords with vertex coordinates. If we want to use generic algorithms with this data
structure, we have to implement the kernel interface at least as far as necessary for
the algorithms, or as far as possible for this data structure.

class triang2d {
int * cells;

};

Starting with the combinatorial functionality, we see that from the data present
in cells we can support the following:

Vertex Vertexlterator VertexOnCelllterator
Edge (= Facet) Edgelterator EdgeOnCelllterator
Cell Celllterator

VertexOnFacetlterator

The implementation of Cell/CellIterator, as well as Vertex/VertexIterator
is straightforward; also, the incidence iterator VertexOnCellIterator is not diffi-
cult to do. See [4, Appendix B.1] for details (note that Vertex is the same type as
VertexIterator there).

But what about Edge and EdgeIterator? The first observation is that an edge
can be represented by a pair of vertices. If we require the pair to be ordered, this
representation is even unique, assuming no two edges have the same set of vertices.

class triang2d::Edge {

vertex_handle vi, v2; // vi > v2
triang2d const* g;
// ...

};

Now, implementing EdgeOnCellIterator is also straightforward. But can we iter-
ate over all edges of a grid? It turns out we can, but at some cost. The idea is to
nest global iteration over all cells and local iteration over the edges of the current
cell. Thus, we will visit each inner edge exactly twice, and we need a means to skip
one of these. We can do so by keeping track of already visited edges by using a
(partial) grid function Edge — {0,1}. Then, EdgeIterator looks like this:

class triang2d::Edgelterator {
Celllterator [
EdgeOnCellIterator ec;
partial_grid_function<Edge, bool> visited;
public:
EdgeIterator& operator++() {
if (! ec.IsDone()) ++ec;
else {
++c;
if (! c.IsDone()) ec = (*c).FirstEdge();
}

/] ...
};

As it turns out, this situation is so common that the whole approach has been
bundled into a generic component in GrAL, so we just need to say

5.1 Adapting a Given Grid Data Structure 23

class triang2d {

/7 ...

typedef facet_iterator<triang2d> Edgelterator;
};

Next, we have to provide grid functions for triang2d. This is simple in the
case of vertices and cells, because they are consecutively numbered. So we can
use a generic array-based implementation for total grid functions and a hash-based
implementation for partial grid functions, as already discussed before (page 11).
For some technical issues, see [3].

In the case of edges, we have to use hash tables for both total and partial grid
functions. Again, we can use generic implementations. As hash function, we have
found pv; + v2 mod p useful, with some small p.

Finally, if we want to use geometric algorithms, we need to define a geometry
for triang2d. At first sight, this looks rather simple, but there is a subtle problem,
relating to the fact that vertex coordinates are stored in a plain array of doubles:

class geom_triang2d_base {
double* coords;
typedef ... coord_type; // 2D point type

777 const& coord(Vertex v) const;
777 & coord(Vertex v);

};

What should we return from the non-const coord(Vertex v)7 On the one
hand, we want allow code like coord_type p = geom.coord(v), on the other hand,
an assignment like geom.coord(v) = coord_type(1,0) should change the array
coords. Thus, we cannot return coord_type &.

The solution is to define a proxy type:

class geom_triang2d_base {

class coord_proxy {
double * coo;
void operator=(coord_type const& p)
{ coo[0] = p[0]; cooll]l = p[1l; }

};
coord_proxy & coord(Vertex v)
{ return coord_proxy(coords[2*v.handle()]);2}

};

For the ‘real’ coord_type, we are free to choose any suitable implementation
of a 2D geometric point. In order to get a bunch of useful geometric functionality
(like volumes or centers), we use a generic 2D geometry:

typedef geometry2d<geom_triang2d_base> geom_triang2d;

The efficiency of this generic implementation will depend on how well the com-
piler can optimize out the overhead (see also the discussion in section 5.3); if it
turns out to be too inefficient, parts have to be specialized for triang2d using di-
rect access to its data. This does not break the generic paradigm, as grid geometries
are part of the kernel.

24 5 NUTS & BOLTS

5.2 Some Issues with Generic Programming

With the adaption triang2d we have just created, all algorithms and generic data
structures (respecting the kernel interface) can be used for this data structure,
provided the requirements of the generic components are met.

For example, the boundary component iterator described in section 3.4 uses
cell-cell adjacency information and cannot be used. This is not a shortcoming of
the generic paradigm, but reflects an intrinsic limitation of our data structure which
just cannot provide this information in an efficient way.

The kernel concepts thus provide a way to classify algorithms and data struc-
tures according to the functionality they require or offer, respectively. A generic
component can be used with a concrete grid data structure iff the requirements
of the former are a subset of the capabilities of the latter. An interesting option
would be to automatically create a list of all generic components (out of some set
of such components) usable with a given data structure.

The adaptation effort can be eased considerably by using generic implementa-
tions of kernel concepts, like facet_iterator, total and partial grid functions, or
grid geometries. This path should be pursued further; for instance, there could be
a generic version for index-based vertex iterators like triang2d: :VertexIterator.

In spite of the favorable picture we have painted so far, there are some difficulties
associated to the generic approach, which make it somewhat harder to use than
the more common methods. Most of the problems stem from technical sources and
are partly due to the relative novelty of the approach.

First, compile times and memory requirements tend to blow up, at least with
state-of-the-art compilers. Also, precompiling code, as done in classical libraries, is
not possible for generic libraries. Support (e. g. incremental compilers) for avoiding
recompiling templates over and over for a fixed application is still in its infancy.

Second, tool support for generic programming is scarce: Error messages of
compilers relating to templates are long, not always helpful and often do not point to
the source of the error. For example, if a requirement of an algorithm is not met, the
error will be reported at some point deep in the algorithm’s implementation, while
the real error occurs where some user-level algorithm interface is called with an
inappropriate type. Techniques like concept checks [19, 13] can help to catch these
errors at the place where they occur. Of course, such errors are also a consequence
of the additional degree of freedom introduced by type parameters.

Documentation tools also have their problems with templates. Specialization
relationships, which are central to generic programming, are hardly supported.
This is not very surprising, as also compiler writers had (and still have) a hard job
implementing these new C++ features.

So, although the situation keeps improving, using generic libraries is not for
beginners. The practitioner, on the other hand, will quite surely greatly benefit
after an initial learning effort. As W. S. Humphrey has put it in [7], reuse is the
only currently available technology having the potential to increase productivity
by an order of magnitude. And generic programming is a technique enabling reuse
of algorithms in areas where this has not been practical before.

5.3 Efficiency of Generic Components 25

5.3 Efficiency of Generic Components

Efficiency is an important aspect of a software component’s (re-)usability. In high-
performance applications, a too inefficient component is practically useless, or at
least usable only for small problems with instructional or reference purpose.

It is obvious that a generic component can be at most as efficient as an im-
plementation specialized for a specific data structure. There seem to be two main
reasons for inefficiencies introduced by a generic version:

1. Syntactic overhead caused by the syntactic side of abstraction, such as ad-
ditional layers of indirection, nested function calls, and small intermediate
objects

2. Semantic overhead caused by the abstraction process loosing information
which could be used to produce a more efficient implementation

Inefficiency stemming from the first source can be measured by comparing a
specialized version implemented in an low-level language (like F77) to a generic
version, choosing sufficiently simple test cases and data structures where the second
source can be excluded.

It turns out that the results are highly compiler dependent, and that some
compilers already do a very good job, up to completely eliminating the overhead,
for example for the generic version of the surface algorithm shown before. Clearly,
the depth of abstractions stacked on top of each other has an adverse effect on
efficiency. More details can be found in [4].

Besides the generic vs. low-level dichotomy, we found that data layout issues
are normally more critical to performance. Also, in grid processing, which mostly
is preprocessing, memory often tends to be a more constraining bottleneck than
pure speed. Here generic components like views which need not copy their data
have an advantage over classical solutions.

Inefficiencies of the second kind range from gross over-generalizations (as ap-
plying a general search-structure for locating a point in a Cartesian grid with
axis-parallel geometry) to rather minor differences, as whether indexing of vertices
starts from 1 or 0.

In case of insufficient efficiency it is always possible to specialize the generic
component towards the concrete situation. Note that specializations do not break
the generic paradigm. In fact, they are an integral part of generic programming,
in sharp contrast to classical object-oriented programming (see e. g. the problems
mentioned in [6]).

In the case of syntactic overhead, specialization is merely a workaround, the need
for which might vanish with the next compiler release. In contrast, for inefficiency
stemming from too coarse abstractions, specializations only reflect the need to
model the rich inner structure of the domain more faithfully. There is a permanent
trade-off between the desire for genericity (minimizing programming effort) and the
need for optimized algorithms, exploiting special structure of the data.

As specialization fits so nicely into the framework of generic programming, we
can use it in an incremental fashion as the need arises, without breaking existing
design. A very powerful construct which helps to stay as generic as possible is

26 6 DISCUSSION

partial specialization, which has been added only recently to C++. This technique
leads to a specialization tree, the most general version at the root. For example, the
point location component alluded to before could be specialized for all grids with
a Cartesian structure. This of course would require to distill the commonalities of
Cartesian grids into a set of abstractions, as has been done for general grids.

Finding significant abstractions demands hard conceptual work and continuing
effort. It is the essence of generic programming.

6 Discussion

The generic approach presented in this paper allows for the first time to create
universally reusable tools for grid processing and thus has the potential to increase
productivity by an order of magnitude in this field.

Its great practical advantage is that it can be used incrementally and non-
exclusively, allowing to continue the use of existing bodies of code, while exploiting
the power of generic programming where advantageous. The associated reuse effort
is constant (that is, independent of the number of generic components used); the
necessary interface programming involves only rather simple code, and could be
further reduced by generic versions of additional kernel components.

However, it must be taken into account that generic programming enters a new
level of abstraction. It thus has a steep learning curve and is not suited very well for
beginners. Tool support is still limited, and technical difficulties must be expected,
although the situation is improving.

If used properly, however, the gains should outweigh the learning investment by
far. The GrAL (Grid Algorithms Library, [5]) is a reference implementation avail-
able online, helping to put these ideas into practice. Making the components offered
increasingly user friendly is an ongoing effort, coupled to the growing experience
with generic libraries.

One of the big challenges for future work will be the establishment of a critical
mass of “standard” generic tools for meshing applications which cover the common
needs. This task necessitates the joint effort of many researchers. It includes fur-
ther work on the abstract concepts, for example to enhance support for modifying
operations, and to allow generic implementations of algorithms which need some
sort of local coordinate systems on cells, as FEM discretizations do.

There is also a need for interfacing with related efforts from other domains: The
BGL (Boost graph library, [20, 18]) defines an analogous kernel for general graphs.
For instance, partitioning algorithms could be based upon that. The MTL (Matrix
Template Library, [17, 11]) is a generic library for sparse and dense linear algebra,
and hence could be coupled via FEM discretizations. CGAL [15] is a library for
geometric computing using generic concepts. It offers a rich set of geometric data
structures and algorithms, and covers a similar problem domain as GrAL.

Besides the more directly measurable effects in terms of reusable code, generic
programming also changes our understanding of the problem domain. It fosters a
thorough analysis of the mathematical structure of grids, their representation in
data structures, and the requirements of algorithms operating on them. This do-
main analysis produces a taxonomy of both data structures and generic components
with respect to their functionality and requirements. It leads to the establishment

REFERENCES 27

of a precise, common domain vocabulary which helps to communicate ideas more
clearly, and deepens our overall understanding of the whole domain. Which, in
turn, will help us creating the next generation of grid tools.

References

[1] Ed Anderson et al. LAPACK users’ guide. STAM, 2nd edition, 1995.

[2] Erlend Arge, Are Magnus Bruaset, and Hans Petter Langtangen, editors. Mod-
ern Software Tools in Scientific Computing. Birkhduser Press, 1997.

[3] Guntram Berti. Generic components for grid data structures and algorithms
with C++. In First Workshop on C++ Template Programming, Erfurt, Ger-
many, October 10 2000.

[4] Guntram Berti. Generic software components for Scientific Computing. PhD
thesis, Faculty of mathematics, computer science, and natural science, BTU
Cottbus, Germany, 2000.

[5] Guntram Berti. GrAL — the Grid Algorithms Library. http://www.math.
tu-cottbus.de/ berti/gral, 2001.

[6] Are Magnus Bruaset, Erik Jarl Holm, and Hans Petter Langtangen. Increasing
the efficiency and reliability of software development for systems of pdes. In
Arge et al. [2].

[7] Watt S. Humphrey. A Discipline of Software Engineering. SEI series in soft-
ware engineering. Addison Wesley, 1995.

[8] Patrick Knupp and Stanly Steinberg. Fundamentals of Grid Generation. CRC
Press, Boca Raton, FL, 1994.

[9] Ullrich Koéthe. Generische Programmierung fir die Bildverarbeitung. PhD
thesis, Universitat Hamburg, 2000.

[10] Meng Lee and Alexander A. Stepanov. The standard template library. Tech-
nical report, Hewlett-Packard Laboratories, February 1995.

[11] Andrew Lumsdaine and Jeremy Siek. The Matrix Template Library (MTL).
http://www.lsc.nd.edu/research/mtl/, 1999.

[12] Martti J. Mantyla. Computational topology: a study of topological manipula-
tions and interrogations in computer graphics and geometric modeling. Acta
Polytech. Scand. Math. Comput. Sci. Ser., 37:1-46, 1983.

[13] Brian McNamara and Yannis Smaragdakis. Static interfaces in C++. In

First Workshop on C++ Template Programming, Erfurt, Germany, October
10 2000.

28

[14]

[19]

[20]

[21]

REFERENCES

David R. Musser and Alexander A. Stepanov. Generic programming. In Pa-
trizia Gianni, editor, Symbolic and algebraic computation: International Sym-
posium ISSAC ’88, Rome, Italy, July 4-8, 1988: proceedings, number 358 in
LNCS, pages 13-25. Springer, 1989.

The CGAL project. The CGAL home page — Computational Geometry Algo-
rithms Library. http://www.cs.uu.nl/CGAL/, 1999.

Jonathan R. Shewchuk. Triangle: A two-dimensional quality mesh generator.
http://www.cs.cmu.edu/"quake/triangle.html, 1999.

Jeremy Siek. A modern framework for portable high performance numerical
linear algebra. Master’s thesis, University of Notre Dame, 1999.

Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. BGL - the
Boost Graph Library. http://www.boost.org/libs/graph/doc/table_of_
contents.html, 2000.

Jeremy Siek and Andrew Lumsdaine. Concept checking: Binding parametric
polymorphism in C++. In First Workshop on C++ Template Programming,
Erfurt, Germany, October 10 2000.

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The generic graph
component library. Dr. Dobbs Journal, 25(9):29-38, September 2000.

Joe F. Thompson, editor. Handbook of grid generation. CRC Press, 1999.

