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Abstract

Grids are fundamental data structures for rep-
resenting geometric structures or their subdivi-
sions. We propose a strategy for decoupling al-
gorithms working on grids from the details of
grid representations, using a generic program-
ming approach in C++. Functionality of grid
data structures is captured by a small set of
primitives, divided into combinatorial and ge-
ometric ones. Special attention is paid to the
generic implementation of grid functions, which
correspond to the notion of mappings from grid
elements (e. g. vertices) to entities of a given
type. Experiments indicate that the overhead of
the generic formulation is low and can be com-
pletely eliminated in some cases.

1 Introduction

Representation of spatial or planar geometric
structures is central to many application do-
mains, such as computational geometry, geo-
metric modeling, geographical information sys-
tems (GIS), and computational simulation by
numerical solution of partial differential equa-
tions (PDEs). Spatial structures are typically
represented by a subdivision into simpler enti-
ties like triangles or cubes, as in fig. [[l. This sub-
division is called grid, mesh, polyhedron, trian-
gulation or cellular complex, depending on the
application area.

Complexity of software in the domains men-
tioned before is often determined by the inter-
action of (grid) data structures and algorithms
operating on them. Examples for algorithms
include cell neighbor search, iso-surface extrac-
tion, rendering of geometric structures, inter-
sections of geometric structures, grid generation
and refinement, numerical discretizations like fi-
nite elements (FEM) or finite volumes (FV), or
point localization in a grid.

Due to the similarity of the underlying math-
ematical concepts, algorithms are in principle
independent of a particular data structure. Yet,

in practice their implementations rely heavily on
the details of the latter. Consequently, such an
implementation can be used only with the con-
crete data structure it was designed for. Given
the multitude of grid representations in use, this
is a real problem.

It would therefore
be a considerable gain
in reusability if grid
algorithms could be
implemented in a way
that is independent
of the data repre-
sentation, without
compromising effi-
ciency substantially.
For the comparatively
simple case of linear
sequences, this has
been achieved by
the C+4 Standard
Template Library
(STL). We propose

an approach similar
in spirit for the more
involved case of grids.

Figure 1: A grid
representing the north
friesian coast

The paper is organized as follows: First (sec-
tion [), we give a very short overview over the
mathematical aspects of grids and the require-
ments of grid algorithms. In section B, we intro-
duce set of core functionality (a micro-kernel)
for grid data-structures. Section [ deals with a
few selected generic components, followed by a
detailed case study for grid functions in section
H. Efficiency is considered in section . In sec-
tion [, we discuss some difficulties that arise in
generic programming. Finally, we compare our
work to related efforts, and discuss some of its
implications.

This work is part of the author’s doctoral the-
sis [4], where the approach is evaluated in the
context of the sequential and distributed numer-
ical solution of PDEs.

2 Analysis of grids and algo-
rithms

The common mathematical basis underlying all
incarnations of grids can be captured by the no-
tions of combinatorial topology (see e. g. [I3])
and polytope theory [20]. Without going into
the details (which can be found in [4]), we intro-



(a) A simple grid G ...

and its incidence lattice

®) ...

Figure 2: The combinatorial structure of a grid is given by its lattice

duce some basic terminology, necessary to un-
derstand the following.

A simple 2-dimensional grid is shown in figure
P(a). It consists of just two cells, five edges and
four vertices. The core of any representation in
a computer is formed by the grid’s combinatorial
structure (fig. E(b)), namely the incidence rela-
tionships between its elements (that is, vertices,
edges and cells). Two elements are incident of
one is contained in the boundary of the other;
for example, v4 is incident to ey4, e5 and co, and
vice versa. This relationship is reflected in the
lattice (b)), which is, roughly spoken, the graph
of incidences.

These notions generalize easily to higher di-
mensions, the three-dimensional case being by
far the most important one. A grid G of di-
mension d consists of elements of dimension 0
(vertices — G%), dimension 1 (edges — G'), up to
dimension d (cells — G4). The boundary of an
element must be composed of lower-dimensional
elements (e. g. the boundary of ¢; consists of
V1,2, V3, €1, €2, e3); and the intersection of any
two elements must be another element or empty.
The mathematical term for such a structure is
CW-complez.

We call elements of dimension d — 1 (co-
dimension 1) facets, which for d = 2 coin-
cides with edges. The reason for this additional
name is, that many algorithms can be formu-
lated in a dimension-independent way by using
the codimension-related terms cell and facet.

Grids may differ in the pattern of incidence
relationship they allow, for instance, a Carte-
sian grid has a very rigid checkerboard pattern,
whereas unstructured grids allow for general cell
types and connectivity (fig. ).

In addition to these combinatorial properties,
a grid bears also geometric information: it is em-
bedded into some geometric space. The most
common case is a planar straight line embed-
ding; other possibilities are curved elements or
embeddings into higher dimensional space or
into a manifold, for example the surface of a
sphere. Straight line embeddings (cf. figs [l and
P(a)]) can be represented by simply assigning
space coordinates to vertices. General embed-
dings, however, are representable only in an ap-
proximate way, which is in sharp contrast to the
combinatorial information.

Thus, it proves advantageous to preserve the
separation of combinatorial and geometric as-
pects also in the software design, leading to a va-
riety of combinations of the corresponding rep-
resentations.

Finally, a mathematical concept often over-
looked is that of a function on the (discrete)
set of grid elements, yielding values of some
arbitrary type 7. Such grid functions are ex-
tremely important to almost every algorithm on
grids. Yet they are often provided only half-
heartedly or in an ad-hoc fashion, that depends
on the needs of the concrete algorithms to be
supported.

After clarification of the mathematical con-
cepts, a second step consists in the analysis of
representative grid algorithms. It turns out that
many of them pose rather modest requirements
on functionality of grid data structures, which
can be captured by a small set of concepts.

A typical algorithm is the determination of
the total flux into a cell across its boundary.
Performed for all cells of a grid G, this is the
core of the finite volume (FV) method:



IN: a cell-based state U : G¢ +— RP (approximate
PDE solution)
OUT: a cell-based flux-sum flux : G¢ — RP
1: for all cells c € G do

2. flux(c) =0
3:  for all facets f of ¢ do
4: flux(c¢) += numerical flux(c, f,U)

What kind of functionality does this algorithm
require? We must iterate over all cells of a
grid, as well as over all facets of a cell, and
associate states U and flux to cells. That is,
U and flux are grid functions on cells. More-
over, in numerical_flux(), geometric data like cell
centers, facet volumes and normals are required
(not shown). We note that the algorithm above
is formulated in a dimension independent way
(except, of course, the interior of the routine
numerical flux()).

In general, the requirements of most algo-
rithms on grid data structures can be grouped
as follows:

e combinatorial functionality:

— sequence iteration over all elements of
a kind, e. g. over all vertices

— 1ncidence iteration over all elements of
a kind incident to a given element

— addition or deletion of grid parts

e grid function functionality: accessing data
associated to grid elements

e geometric functionality: mapping of combi-
natoric elements to geometric entities, e. g.
vertex coordinates, edge segments, and so
on; calculating measures like volumes, cen-
ters, or normals.

In addition, a few algorithms have special re-
quirements on grids, for example does the cal-
culation of cell neighbors require that facets be
uniquely determined by their vertex sets. Also,
in cases like finite element methods, more in-
formation about the combinatorial structure of
grid cells is required, see [d] for details.

3 A Micro-kernel for Grid
Data Structures

As a consequence of the outcome of algorithm
requirements analysis, we can identify a set of
functional primitives, forming a micro-kernel for
grid data structures. This micro-kernel serves

two fundamental purposes: First, it separates
basic (atomic) functionality from derived (com-
posite) functionality, thus answering the ques-
tion “What belongs into a grid data structure?”
And second, in the context of generic program-
ming, it serves as a broker layer between con-
crete data representations and generic compo-
nents like algorithms and other data structures.

The identification of a small yet sufficient set
of basic primitives is an iterative process, de-
pending on an analysis of both typical algorithm
requirements and data structure capabilities, as
mentioned in the preceding section.

With respect to the universe of possible op-
erations on grids the micro-kernel is (almost)
minimal: No part of it can be expressed ap-
propriately by other parts in the general case.
With respect to the basic functionality offered
by concrete grid data structures it is mazimal:
A given representation component in general
implements only a part of it. For example, a
simple triangulation data structure which only
stores the vertex indices for each cell cannot pro-
vide iteration over neighbor cells. On the other
hand, we are able to provide a generic imple-
mentation of neighbor iteration, using the part
of the micro-kernel supported by the triangula-
tion component. However, this will not be as
efficient as a specialized implementation by ex-
tending the triangulation component.

Following the terminology of the SGI STL
[[R], we use the term concept for a set of re-
quirements. A concrete entity (e. g. a class) sat-
isfying a concept’s requirements is called model
of the concept. The concepts for the combina-
torial requirements are listed in table . FEle-
ment concepts, like Vertex, correspond directly
to their mathematical counterparts mentioned
above. Among others, they give access to inci-
dent elements and are used to access data stored
in grid functions (see below). Handle concepts
provide for a sort of minimal representation of
grid elements. They are unique only in conjunc-
tion with a fixed grid. Their main use is the
economic implementation of grid functions, grid
subranges and the like.

All iterator concepts are refinements of the
STL Forward lterator. Sequence iterators allow
for global loops over all elements of a grid, inci-
dence iterators provide access to elements inci-
dent to a given element.

Grid functions allow access and storage of ar-
bitrary data on grid elements. They correspond



Elements handles Sequence Iterators Incidence Iterators
Vertex Vertex Handle Vertex lterator VertexOnVertex lterator
EdgeOnVertex Iterator
CellOnVertex Iterator
Edge Edge Handle Edge lterator CellOnEdge lterator
Facet Facet Handle  Facet Iterator VertexOnFacet lterator
Cell Cell Handle Cell Iterator VertexOnCell Iterator
Table 1: Concepts for combinatorial functionality

to the mathematical notion of functions from
the discrete set of grid elements (of a fixed di-
mension) to value of some type T. Concepts
for grid functions are shown in table B. All grid
function concepts are refinements of STL Adapt-
able Unary Function, with element and value
type corresponding to argument and result type,
resp.

We chose to make read and write opera-
tions syntactically different (operators () and
(1, resp.) in order to give better control over
them. For example, a partial grid function nor-
mally needs to allocate new storage when write
access to a previously untouched element oc-
curs; an effect that is clearly undesired when one
just wants to read, possibly getting the default
value.] A typical use of partial grid functions is
the marking of elements during some algorithm
(e. g. depth-first traversal), with marking ini-
tialized to false in O(1) time. This allows for
efficient implementations of local algorithms in
sublinear time (with respect to the size of the
whole grid).

If a grid function is simply passed to an al-
gorithm, clearly the interfaces of Grid Function
(or Mutable Grid Function, if it is an output vari-
able) are sufficient. Many algorithms, however,
use temporary grid functions internally. There-
fore, it is crucial that (a) there is a uniform way
to create (and destroy) grid functions, besides
accessing and altering their values, and (b), that
the totality of needed grid functions does not in-
fluence the definition of the underlying grid data
structures. The latter would introduce an un-
due coupling from algorithms to grid data struc-
tures.

Therefore, we chose to provide the following

class templates in the micro-kernel, where E is
the element type (that is, argument type), and
T is the value type:

template<class E, class T>
class grid_function;
template<class E, class T>
class partial_grid_function;

The class template grid function is a model
of Total Grid Function,
function is a model of Partial Grid Function.
Whereas the value type T can be dealt with in
a fully generic way, the dependency on the E
parameter is more interesting, and is discussed

below.
The creation of grid functions is straightfor-
ward:

and partial_grid_-

MyGrid G; // create a grid
// associate ints (’colors’) to vertices
grid_function <MyVertex,int>

color (G);
// mark edges, default: false
partial_grid_function<MyEdge ,bool>

marked (G, false);
// put 2-vectors on cells, init. with (0,0).
grid_function <MyCell ,vec2>

state (G,vec2(0,0));

Here MyVertex and MyEdge are typedefs to models
of Vertex and Edge, corresponding to the type
MyGrid.

Grid algorithms can be formulated quite nat-
urally using this micro-kernel. For example,

1. The same problem occurs with the operator[] in
the STL map and hash_map, where the lack of a default
value means one has to use a more complicated sequence
of operations if no insertion is desired.



Concept Feature Member

Grid Function (G. F.) element (arg) type typedef element type (E)
value type typedef value_type (T)
grid type typedef grid_type

read access
Mutable G. F. + write access

Container G. F. + creation

Total G. F.

Partial G. F.

+ default value

+ storage on all elements

+ storage on some elem.

T const& operator() (E const&)
(mapping E — T)

T & operator[] (E const&)
(see below for () vs. [1)
grid_function()
grid_function(grid_type const&)

grid_function(grid_type const&,
T const&)

grid_function(grid_type const&,
T const&)
set_default(T const&)

Table 2:

Concepts for grid function functionality. Refinement relationship is shown by indenta-

tion: Total and Partial G. F. are both refinements of Container G. F.

counting for each vertex the number of incident
cells translates into the following code:f

// init. ncells[v] to O
grid_function<Vertex,int> ncells(G,0);
// for all cells c of G
for(CellIterator c(G); c; ++c)
// for all vertices of c
for(VertexOnCellIterator vc(*c);
ncells[*vc]++;

vc; ++vce)

for(VertexIterator v(G); v; ++v)
cout << "ncell: " << ncells(*v) << ’\n’;

This code also shows the use of a total grid
function. With a good optimizing compiler, the
efficiency achieved for this generic piece of code
is quite close to that of a low-level version, see
below.

Modifying operations on data structures are
harder to cope with. We chose to base mutat-
ing algorithms on coarse-grained mutating oper-
ations, namely grid copy, grid enlargement and
grid cutting (removal of parts). These oper-
ations have proven useful in conjunction with
generic implementations of distributed grids and
adaptive refinement strategies, yet more work is
needed to fully master mutating operations. In
particular, the question of how to handle depen-
dent data, such as grid functions, when adding
or deleting parts of a grid is not entirely settled.
A majority of important algorithms, however,
are non-mutating (ignoring the unproblematic
write-access to grid functions).

4 Generic Components

One of the purposes of having a micro-kernel
is separating the truly representation-dependent
issues from those which can be dealt with in a
generic manner. Of course, the distinction is not
sharp; we will see that even parts of the micro-
kernel can be implemented generically based on
other parts of the latter. However, there often
are better implementations possible, which are
specialized to the concrete representation and
thus justify their inclusion into the micro-kernel.

This discussion suggests a classification of
generic components according to their general-
ity, or proximity to the basic kernel. On the one
end ot the scale, we have components that are
properly regarded as extending the functional-
ity of grid data structures, for instance itera-
tors, grid functions or grid subranges. On the
other end, there are lots of (mostly algorithmic)
components fulfilling very domain-specific tasks,
such as numerical discretizations, grid smooth-
ing, and so on. Somewhere in between lie data
structures like hierarchical or distributed grids.

In the following, we review some generic com-
ponents having been developed so far, proceed-
ing from more general to more specific. The case
of grid functions is discussed in more detail in

2. The deviation from the STL-style iteration is es-
sentially just a matter of convenience. As our iterators
must be classes by other reasons, the exclusion of point-
ers poses no problem here.



the next section.

Iterators Sequence as well as incidence it-
erators can be implemented generically in some
cases. For example, sequence iterators for (non-
stored) facets can be implemented using cell it-
erators and facet-on-cell iterators, if there is a
total ordering on cells. Incidence iterators on
vertices can (in 2D) be based on a so-called
switch operation [H]. The same technique works
for boundary iterators, where one can use arbi-
trary cell predicates to define inner and outer
grid parts.

Grid subranges A grid subrange is defined
by a collection of cells, and can be implemented
based on cell handles. The elements of lower
dimension contained in the closure of the cell
set are then given by closure iterators, which use
partial grid functions to mark visited elements.

Grid functions  Grid functions have two ba-
sic parameters of variation: Element type and
value type. The value type parameter poses
no special problems (cf. STL). Depending on
the properties of the element parameter, we can
choose a generic implementation using vectors
or hash tables, see the next section.

Distributed grids Applications like solu-
tion of partial differential equations needing a
lot of computational power are candidates for
parallel execution. The resulting management
of overlapping grid parts is provided by dis-
tributed grids. Data structures for representing
the overlap ranges, methods for updating dis-
tributed grid functions and algorithms for auto-
matic generation of overlapping parts have been
based generically on the kernel.

Hierarchical grids Some of the more ad-
vanced computational methods (such as the
multigrid method below) are based on hierar-
chies of successively refined grids, with wvertical
(coarse « fine) relationships between them.

Multigrid algorithms Multigrid methods
[[0] are optimal algorithms for solving sparse
linear systems ‘living’ on a hierarchy of grids.
Grid-related operations, such as the mapping of
state vectors and matrices between different grid
levels (restriction and prolongation), are imple-
mented generically.

Finite volume discretizations In addition
to the basic finite volume algorithm presented
before more complex higher-order methods have
been implemented, which involve averaging val-
ues of cells incident to vertices.

Two prototype generic solvers for PDE prob-
lems have been based on the components just
mentioned: A finite element solver for the Pois-
son equation using adaptive grid hierarchies and
multigrid algorithms, and a finite volume solver
for the incompressible Euler equations. The lat-
ter has been parallelized using components for
distributed grids. We will come back to these
solvers at the end of the paper.

5 A Case Study: Grid Func-
tions

The implementation of a grid function depends
crucially of the representation of the correspond-
ing element type. If the elements of that type
are numbered consecutively, for example if ver-
tices are stored in an array (random-access se-
quence), it is possible to use STL vectors for
the corresponding grid function. On the other
hand, if no such enumeration is available (for
example, if the corresponding elements are not
permanently stored at all), we can resort to hash
tables or balanced trees, depending on whether
there can be defined a hash function or a total
order on the element type.

We use element traits to provide the necessary
information in a uniform way:

template<class E>
struct elem_traits {

typedef grid_t;

typedef handle_t; // e.g. int
typedef elem_t; // ==

typedef elem_tag; // kind of elem.,

// e.g. vertex_tag

typedef elem_iter; // sequence it. of grid_t

typedef hasher_t; // e.g. hash<handle_t>

static size_type size (grid_t const&);

static elem_iter FirstElem(grid_t const&);

static handle_t handle (elem_t const&);
};

For example, the traits contain a unified
method of accessing the size of the underly-
ing grid (size(grid-t const&)), when viewed as
a container of the corresponding element type.
This allows a vector-based implementation to



initialize the vector size, without knowing the
kind (vertex, edge or whatever) of the element:

template<class E, class T>
class grid_function_vector {
typedef elem_traits<E> et;
vector<T> table; // data
public:
grid_function_vector(grid_t const& gg)
: g(&gg), table(et::size(gg)) {}

T& operator[] (E const& e)
{ return tablel[et::handle(e)];}

/* ... %/
};

We provide generic implementations for both
the vector and hash table case. For a concrete
element type E, one of these implementations
can be chosen by partially specializing the grid
function template for E, leaving the value type
parameterized:

class MyVertex { ... };
class MyEdge { ... };

template<class T>
grid_function<MyVertex,T>

: public grid_function_vector<MyVertex,T>
{ /* repeat constructors */ };

template<class T>
grid_function<MyEdge,T>

: public grid_function_hash<MyEdge,T>
{ /* repeat constructors */ };

Here, it is assumed that MyEdge is not apt for
storing associated data in a vector, for instance,
it might not be stored permanently.

For partial grid functions, we provide
a default generic implementation, using
grid_function_hash<>.

An interesting problem arises here, because
we want a grid function to give iteration ac-
cess to the set of elements on which it is ex-
plicitly defined. That is, a grid function on ver-
tices should provide a type VertexIterator and a
corresponding member function FirstVertex().
How can this be achieved, while minimizing code
duplication?

We can implement the functionality in a
generic way (e. g. using the traits to ac-
cess the iteration capability of the underlying
grid for total grid functions), thus obtaining
ElementIterator and FirstElem(). It remains
to map these to the desired names: There
must be a type VertexIterator as a typedef for
ElementIterator if the element type is a vertex

type, and so on. This mapping is performed by
the following template:

template<
class ElemlIt, // to be renamed to
// VertexIterator etc.
class ElemRge, // range (grid fct) def. Elemlt,
// derives from map_elem_name<>
// (Nackman-Barton trick)
class elem_tag> // kind of element,
// to be specialized
struct map_elem_name {};

// specialization for vertex
template<class ElemIt, class ElemRge>
struct map_elem_name<ElemIt, ElemRge,
vertex_tag>
{
typedef ElemIt VertexIterator;
VertexIterator FirstVertex() const {
return VertexIterator(
static_cast<ElemRge const*>(this)->
FirstElem());
}
};

// spec. for edge [not shown]
/...

In order to inject the new specialized syntax
provided by map_element name<>, we use a sort of
“Nackman-Barton trick” [2], deriving the final
grid function from it:
template<class E, class T>
class partial_grid_function :

// defines ElementIterator

public grid_function_hash<E,T>,

public map_elem_name<

ElementIterator,

partial_grid_function<E,T>,

elem_traits<E>::elem_tag>
{ /* constructors */ };

Further complications arise if in the 2D case,
we want to provide both Edge and Facet names.
Building on the techniques just described, the
solution is easy, if the element traits of the
2D edge type provides edge2d_tag instead of
edge_tag. We simply take the union of the cor-
responding map_elem name<> specializations:
template<class ElemIt, class ElemR>
struct map_elem_name<ElemIt,ElemR, edge2d_tag> :

public map_elem_name<ElemIt,ElemR, edge_tag>,
public map_elem_name<ElemIt,ElemR, facet_tag> {};

6 Efficiency

When dealing with high-level implementations
of algorithms, one generally runs the risk of los-
ing performance with respect to a low level im-
plementation. However, the generic approach



using C++ templates often allows good com-
pilers to optimize out much of this so-called
abstraction penalty. We used compilers gcc
2.95, KAI KCC v3.4 and g77 v0.5.24f] (with
options -03 -fforce-addr -funroll-loops) on
Linux 2.2.14 running on a 450 MHz Pentium
86686 with 512K cache. We tested several grid
sizes between 400 and 250.000 cells; the ratios
of run times did not show large dependencies on
grid size.

A first test case was the vertex-cell incidence
counting algorithm shown on page B, using a
simple array-based Fortran77 data structure for
triangular grids as point of reference:

INTEGER ntri
INTEGER til(1:3,1:ntri), ncells(1l:nv)
DO 20 ¢ = 1,ntri
DO 10 vc = 1,3
ncells(til(vc,c)) = ncells(til(vc,c))+1
10 CONTINUE
20 CONTINUE

Here ntri is the number of triangles, and
til(v,c) is the index of vertex number v of
cell ¢ (1 < v < 3). It turns out that in this
case, the KAT C++ compiler (options used: +K3)
can completely eliminate the overhead due to
abstraction.

The algorithm involves indirect addressing,
which is much more typical of unstructured
grid algorithms than are plain vector loops in
a BLAS style.

Another test case involving geometric prim-
itives still shows a mnon-vanishing overhead,
where the factor varies between 1.2 and 1.8. For
instance, the following loop for summing up the
facet normals of a cell has an overhead of about
1.8 if a generic grid geometry is used, and of 1.2
if the geometry is specialized to the grid type
(that is, using low-level code inside the calcula-
tion of normal()):f]

coord_type normal(0,0);
for(CellIterator c(aGrid); c; ++c)
for (FacetOnCellIterator fc(*c); fc; ++fc)
normal += Geom.normal(fc);

The only difference between the two imple-
mentations of normal() is, that in the high-level
case coordinate values are stored in a grid func-
tion and accessed via intermediate vertices (car-
rying an extra pointer to a grid), whereas in the
low-level case, coordinate values are stored in
an array and are accessed by vertex indices ob-
tained as in the Fortran til cell-vertex incidence
array above.

The used for KcCC +K3
--abstract_float --abstract_pointer --restrict

--inline_implicit_space_time=100. Omitting the
last option increases run time by a factor of
about 3! A reason is probably the deeper
nesting of function calls inside normal() in the

high-level version.

options were

The examples presented are in some respect
a worst-case scenario for the performance of
generic implementations using the micro-kernel,
because no real work is performed inside the
loops. The performance gain obtained by using
a better data layout often outweighs the differ-
ence between high-level and low-level data ac-
cess.

7 Some Recurring Difficul-
ties

Many problems in generic programming arise
from the fact that one has to deal with het-
erogeneity introduced by the representation of
data. For example, in the generic implementa-
tion of grid functions, one has to take different
action depending on whether the elements are
consecutively numbered or not (a semantic het-
erogeneity). Also, the number of elements of
a given type in a grid is accessed by different
functions (a syntactic heterogeneity).

We have overcome these heterogeneities by
collecting the relevant information about ele-
ment types in element traits mentioned before.
On a higher level, an algorithm using grid func-
tions does not have to bother with these details,
as grid functions offer a completely uniform way
of dealing with data associated to grid elements.

This is an example of what can be called ho-
mogenization: Heterogeneous properties of en-
tities playing the same role (grid elements and
their handles) are hidden by a uniform interface
(traits::size(grid-t const&)) or dealt with at
the next higher level (grid functions), and thus
do not propagate any further.

This approach crucially depends on a special-
ization mechanism, or still better, partial spe-
cialization. The common conception of C+-+

3. This is certainly not the best available F77 com-
piler; however, tests on a SUN Ultra (where KCC was not
available to us) using the SUN F77 compiler showed the
same ratios between F77 and gcc performance.

4. The ratio increased to about 1.4 for small grid sizes



templates as just a kind of macro turns out to
be a misconception at this point.

The art, of course, consists in identifying a
small number of key properties that allow to
capture the essential differences of representa-
tions. For grid elements, one such key property
is whether or not they are numbered (stored)
consecutively.

A related problem is the adaptation of al-
gorithms to the capabilities of data structures.
An extreme case is a testing function for grid
data structures: Here, we want to use exactly
those concepts implemented by the data struc-
ture. A generic implementation of such a testing
procedure would have to automatically adapt
to the set of supported concepts. This could
be achieved by breaking down the algorithm in
‘atomic’ pieces and put them together, based on
compile-time information whether a certain fea-
ture (e. g. iterator) exists or not.

A third difficulty is the decision of what to pa-
rameterize. As many algorithms internally use a
lot of data structures which could possibly affect
their performance or execution, these could be
made parameters as well. However, this leads to
blown-up interfaces, which leave many of the de-
cisions (and possibilities of making mistakes) to
the user. We have experimented with a layering
of interfaces, from minimal to maximal parame-
terization, to alleviate the problem. If there are
many potential parameters, a more systematic
approach is needed to organize them, especially
sensible defaults.

8 Discussion

In this paper, we have described a micro-kernel
as a basis for generic programming in the do-
main of grids and grid algorithms. The generic
approach gains increasing attention in the field
of scientific computing. To our knowledge, the
work presented here is the first to successfully
apply this paradigm to arbitrary grids used in
this field. All libraries for numerical PDE so-
lution that are using generic programming tech-
niques and known to the author work on specific
grid data structures, either structured grids (e.
g. [6]), semi-structured (e. g. [I6]) or unstruc-
tured (e. g. [@]).

Widening the focus beyond PDE solution
two examples that perhaps come closest to our
work in scope and problem domain are CGAL

(Computational Geometry Algorithms Library,
[7, B]) and GGCL (Generic Graph Component
Library, [I2, @1, ©9]). Also, the LEDA library
[[d] — which by itself does not offer generic al-
gorithms — has been enhanced with graph iter-
ators (GIT - Graph Iterator Extension, [I3]) to
support generic graph algorithms.

CGAL offers data structures and algorithms
used in geometric computing, such as convex
hulls and Delaunay triangulations, which corre-
spond to the grid data structures treated here.
The equivalent of incidence iterators is given by
circulators in 2D. Grid functions are not sup-
ported as a separate entity; instead, one can pa-
rameterize some data structures by the type of
data stored on the elements like vertices or faces.
This has the disadvantage of coupling the data
structures to the set of algorithms using them.
On the whole, implementations of algorithms
on grids seem to be slanted towards the par-
ticular family of half-edge data structures used
in CGAL, thus limiting their reuse in different
contexts.

GGCL implements generic graph algorithms
and data structures. The equivalent of incidence
iterators is modeled by a sort of ‘virtual con-
tainer’ concept, making it possible for instance
to access all edges adjacent to a given node. In-
stead of grid functions, one can use a decorator
pattern to achieve a similar effect, but which
lacks the uniformity of our approach.

Graphs can be obtained from grids in sev-
eral ways, by stripping off some structure and
the geometric aspects. As many algorithms on
grids, for example grid partitioning, can be for-
mulated on graphs in a more general way, us-
ing algorithms from a generic graph library like
GGCL would be highly interesting. For each
of the several possibilities of viewing a grid as
graph, only one single adapter would have to be
written. This adaptation is scheduled for the
near future.

What we have described here touches only a
small part of the work presented in [@]. Two
complete applications for the numerical solution
of partial differential equations have been devel-
oped, one using FEM and adaptive multigrid,
the other using a F'V approach.

Of course, the generic approach does not
make the task of developing a single PDE solver
much easier — much preliminary effort has to
go into the domain analysis and development of
reusable components. But once on can build on



this effort, the approach has considerable advan-
tages. For instance, even if the underlying grid
type is not intended to be changed, the micro-
kernel layer effectively shields algorithmic code
from changes to the low-level data representa-
tion, thus making later optimizations much eas-
ier. A typical example for such optimizations is
the decision whether to store or to compute cer-
tain geometric quantities, a question which can
be answered only on the basis of the concrete
algorithms used.

To date, one of the most convincing proofs of
the viability of the approach is given by parallel
PDE solution. The distributed grid components
mentioned above have been employed success-
fully to parallelize a generic F'V solver, as well as
a pre-existing Navier-Stokes solver [[]. For the
latter, in order to generate a distributed version
of the code, only a simple adapter mapping the
functionality of the original grid data structure
to the micro-kernel had to be written, and some
localized changes to the numerical code had to
be made. So, work that normally requires sev-
eral months could be achieved within a few days.

The full potential of the generic method be-
comes visible when producing whole families of
PDE solvers. At present, a rather small fam-
ily is implemented, allowing a F'V solver to vary
— besides grid and geometry — the type of the
(hyperbolic) equation to solve, and, by select-
ing the appropriate grid type, to choose whether
code for sequential or distributed computation
is generated. As grid data structures represent
only a small part of the parameters of variation,
there is much opportunity for future extensions.
Also, a more systematic approach to implement-
ing grid data structures is promising, using e. g.
principles of generative programming [[].

Currently, the code is being prepared for pub-
lic release [3].
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